题目内容
【题目】如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若.
(1)求直线的表达式和反比例函数的表达式;
(2)若直线与轴的交点为,求的面积.
【答案】(1),;(2)2
【解析】
(1)先由S△AOB=4,求得点B的坐标是(2,4),把点B(2,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(-2,0)、B(2,4)代入直线AB的解析式为y=ax+b可得直线AB的解析式为y=x+2.
(2)把x=0代入直线AB的解析式y=x+2得y=2,即OC=2,可得S△OCB=OC×2=×2×2=2.
解:(1)由A(-2,0),得OA=2;
∵点B(2,m)在第一象限内,S△AOB=4,
∴OAm=4;
∴m=4;
∴点B的坐标是(2,4);
设该反比例函数的解析式为(k≠0),
将点B的坐标代入,得,
∴k=8;
∴反比例函数的解析式为:;
设直线AB的解析式为y=ax+b(k≠0),
将点A,B的坐标分别代入,得
,
解得:;
∴直线的表达式是;
(2)在y=x+2中,令x=0,得y=2.
∴点C的坐标是(0,2),
∴OC=2;
∴S△OCB=OC×2=×2×2=2.
【题目】随着智能手机的普及率越来越高以及移动支付的快捷高效性,中国移动支付在世界处于领先水平.为了解人们平时最喜欢用哪种移动支付方式,因此在某步行街对行人进行随机抽样调查,以下是根据调查结果分别整理的不完整的统计表和统计图.
移动支付方式 | 支付宝 | 微信 | 其他 |
人数/人 |
| 200 | 75 |
请你根据上述统计表和统计图提供的信息.完成下列问题:
(1)在此次调查中,使用支付宝支付的人数;
(2)求表示微信支付的扇形所对的圆心角度数;
(3)某天该步行街人流量为10万人,其中30%的人购物并选择移动支付,请你依据此次调查获得的信息估计一下当天使用微信支付的人数.