题目内容
【题目】如图,平行四边形ABCD的对角线AC,BD相交于点O,AE平分∠BAD,分别交BC,BD于点E,P,连接OE,∠ADC=60°,AB=BC=2,下列结论:①∠CAD=30°;②BD=2;③S四边形ABCD=ABAC;④OE=AD;⑤S△BOE=.其中正确的个数有( )个
A.2B.3C.4D.5
【答案】D
【解析】
①先根据角平分线和平行线的性质得:∠BAE=∠BEA,则AB=BE=2,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=1,OE∥AB,根据勾股定理计算OC,OD的长,即可求BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤由三角形中线的性质可得:S△BOE=S△EOC=OEOC=.
解:①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=2,
∴△ABE是等边三角形,
∴AE=BE=2,
∵BC=4,
∴EC=2,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=1,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=
BD=2OD=2
故②正确
③由②知:∠BAC=90°,
∴SABCD=ABAC,
故③正确;
④由②知:OE是△ABC的中位线,
∴OE=AB,
∵AB=BC,
∴OE=BC=AD,
故④正确;
⑤∵BE=EC=2
∴S△BOE=S△EOC=OEOC=
故⑤正确
故选:D.