题目内容
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
【答案】(1)y=﹣2x+12;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;
【解析】
(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.
(2)联立方程组求解出交点坐标即可.
(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.
(1)由已知,OA=6,OB=12,OD=4,
∵CD⊥x轴,
∴OB∥CD,
∴△ABO∽△ACD,
∴,
∴,
∴CD=20,
∴点C坐标为(﹣4,20),
∴n=xy=﹣80.
∴反比例函数解析式为:y=﹣,
把点A(6,0),B(0,12)代入y=kx+b得:,
解得:.
∴一次函数解析式为:y=﹣2x+12,
(2)当﹣=﹣2x+12时,解得,
x1=10,x2=﹣4,
当x=10时,y=﹣8,
∴点E坐标为(10,﹣8),
∴S△CDE=S△CDA+S△EDA=.
(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,
∴由图象得,x≥10,或﹣4≤x<0.
练习册系列答案
相关题目