题目内容
【题目】自古以来,钓鱼岛及其附属岛屿都是我国固有领土.如图,为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛(又称为鸟岛)两侧端点A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了800米,在点D测得端点B的俯角为45°,求北小岛两侧端点A、B的距离.
(结果精确到0.1米,参考数 ≈1.73, ≈1.41)
【答案】解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四边形ABFE为矩形.
∴AB=EF,AE=BF,
由题意可知:AE=BF=100米,CD=800米.
在Rt△AEC中,∠C=60°,AE=100米.
∴CE= (米).
在Rt△BFD中,∠BDF=45°,BF=100.
∴DF= =100(米).
∴AB=EF=CD+DF﹣CE=800+100﹣ ≈900﹣ ×1.73≈900﹣57.67≈842.3米.
答:岛屿两侧端点A、B的距离约为842.3米.
【解析】首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=800米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得岛屿两端A、B的距离.
【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法),以及对关于仰角俯角问题的理解,了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.