题目内容
【题目】如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.
(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.
【答案】
(1)
证明:∵DC∥AB,
∴∠B=∠ECF,∠BAF=∠E,
∴△ABF∽△ECF.
(2)
解:∵在等腰梯形ABCD中,AD=BC,AD=5cm,AB=8cm,CF=2cm,
∴BF=3cm.
∵由(1)知,△ABF∽△ECF,
∴ ,即 .
∴CE= (cm).
【解析】(1)由“两直线平行,内错角相等”推知∠B=∠ECF,∠BAF=∠E.则由“两角法”证得结论;(2)利用(1)中的相似三角形的对应边成比例得到 ,即 .所以CE= (cm).
【考点精析】认真审题,首先需要了解等腰梯形的性质(等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】某游泳池有水4000m3 , 先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟) | … | 10 | 20 | 30 | 40 | … |
水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.