题目内容

【题目】在四边形ABCD中,AB=CD,M、N分别是AD和BC的中点,延长BA和CD分别交射线NM于点E和点F,若tan∠F= , FC=FN,EN= , 则EF=

【答案】1
【解析】解:连接BD,点K为BD的中点;连接KM、KN;延长MN至G点,使EG=EB,连接BG.
∵M、N分别是AD和BC的中点,
∴KM∥AB,AB=2KM、KN∥CD,CD=2KN.
∵AB=CD,
∴KM=KN,
∴△KMN为等腰三角形,
∴∠KMN=∠KNM,
∵KM∥AB
∴∠BEG=∠KMN,
∵KN∥CD,
∴∠F=∠KNM
∴∠F=∠KNM=∠KMN=∠BEG,
∵FC=FN、EB=EG,
∴△EBG和△FCN均为等腰三角形,且△EBG∽△FCN.
∴∠G=∠C=∠FNC,
又∵∠BNG=∠FNC,
∴∠G=∠BNG,
∴△BGN为等腰三角形,
∴BN=BG,∠EBG=∠G,
∴BG=CN,∠EBG=∠FNC,
在△EBG和△FNC中
∴△EBG≌△FCN(ASA),
∴EG=FN,
∴EF=NG,
过B点作GN的垂线BH交GN于H点.
由△BGN为等腰△可知,HN=HG,
∵tan∠F=
∴设BH=3a.
∴tan∠BEG=tan∠F=
∴EH=4a、BE=5a,
∴HG=HN=BE﹣EH=a,
∵EN=HE﹣HN=4a﹣a=3a,
∵EN= , 所以3a=
∴a= , EF=NG=2a=1,
所以答案是:1.


【考点精析】本题主要考查了三角形中位线定理的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网