题目内容
【题目】如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E点,AE=2,则四边形ABCD的面积为( )
A.2B.3C.4D.6
【答案】C
【解析】
过点A作AF⊥AE,交CD的延长线于点F,由题意可证△ABE≌△ADF,可得AE=AF,则可证四边形AECF是正方形,四边形ABCD的面积即为正方形AECF的面积.
解:过点A作AF⊥AE,交CD的延长线于点F
∵∠BAD=∠C=90°,AE⊥BC,AE⊥AF
∴四边形AECF是矩形
∴∠F=90°
∵AE⊥AF,BA⊥AD
∴∠BAE+∠DAE=90°,∠DAF+∠DAE=90°
∴∠BAE=∠DAE
又∵AB=AD,∠F=∠AEB=90°
∴△ADF≌△ABE(AAS)
∴AF=AE,S△ADF=S△ABE.
∴四边形AECF是正方形.
∴S正方形AECF=AE2=4
∵S四边形ABCD=S△ABE+S四边形AECD=S△ADF+S四边形AECD.
∴S四边形ABCD=S正方形AECF=4
故选:C.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:
x | … | 0 | 4 | … | |
y | … | 0.37 | -1 | 0.37 | … |
则方程ax2+bx+1.37=0的根是( )
A.0或4B.或C.1或5D.无实根