题目内容
【题目】在四边形ABCD中,AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=α,∠BCD=β,点E,F是四边形ABCD内的两个点,满足∠EAF=,∠ECF=,连接BE,EF,FD.
(1)如图1,当α=β时,判断∠ABE和∠ADF之间的数量关系,并证明你的猜想;
(2)当α≠β时,用等式表示线段BE,EF,FD之间的数量关系(直接写出即可)
【答案】(1)∠ABE+∠ADF=90°,见解析;(2)BE2+DF2= EF2.
【解析】
(1)结论:∠ABE+∠ADF=90°.将△ABE绕点A逆时针旋转90°得到△ADM,将△BCE绕点C顺时针旋转90°得到△CDT,连接FM,TF.证明M,D,T共线,再证明FM=FT.DM=DT即可解决问题.
(2)结论:EF2=BE2+DF2.将△ABE绕点A逆时针旋转α度得到△ADM,将△BCE绕点C顺时针旋转β度得到△CDT,连接FM,TF.证明∠FDM=90°,利用勾股定理即可解决问题.
(1)结论:∠ABE+∠ADF=90°.
理由:∵AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=∠BCD,
∴∠BAD=∠BCD=90°,
∴四边形ABCD是正方形,
∴AB=BC=CD=AD,
将△ABE绕点A逆时针旋转90°得到△ADM,将△BCE绕点C顺时针旋转90°得到△CDT,连接FM,TF.
∵∠EAF=×90°=45°,
∴∠MAD+∠DAF=∠BAE+∠DAF=45°,
∴∠FAM=∠FAE,
∵AM=AE,AF=AF,
∴△AFM≌△AFE(SAS),
∴EF=FM,
同法可证:EF=FT,
∴FM=FT,
∵∠ADM+∠CDT=∠ABE+∠CBE=90°,
∴∠MDT=90°+90°=180°,
∴M,D,T共线,
∵DM=BE,DT=BE,
∴DM=DT,
∴FD⊥MT,
∴∠FDM=90°,
∴∠ADM+∠ADF=90°,
∵∠ADM=∠ABE,
∴∠ABE+∠ADF=90°.
(2)结论:EF2=BE2+DF2.
理由:∵AD=AB,CD=CB,
∴将△ABE绕点A逆时针旋转α度得到△ADM,将△BCE绕点C顺时针旋转β度得到△CDT,连接FM,TF.
∵∠EAF=×∠DAB=α,
∴∠MAD+∠DAF=∠BAE+∠DAF=α,
∴∠FAM=∠FAE,
∵AM=AE,AF=AF,
∴△AFM≌△AFE(SAS),
∴EF=FM,
同法可证:EF=FT,
∴FM=FT,
∵∠ADM+∠CDT=∠ABE+∠CBE=90°,
∴∠MDT=90°+90°=180°,
∴M,D,T共线,
∵DM=BE,DT=BE,
∴DM=DT,
∴FD⊥MT,
∴∠FDM=90°,
∴FM2=DM2+DF2,
∵FM=EF,DM=BE,
∴EF2=BE2+DF2.