题目内容
【题目】如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(2,4),则点D的横坐标是___________.
【答案】
【解析】
首先过点D作DF⊥OA于F,过D作DG⊥y轴于G.由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长,从而得到DE、EC的长.在Rt△EDC中,利用三角形面积公式求得DG的长,即可得点D的横坐标.
过点D作DF⊥OA于F,过D作DG⊥y轴于G.
∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA.
∵B(2,4),∴AD=AB=4,DC=CB=2.设OE=x,则AE=EC=OC﹣OE=4﹣x.在Rt△AOE中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,∴OE,EC=AE,∴DE=DA-AE=4-=.在Rt△EDC中,∵DEDC=DGEC,∴DG===,∴点D的横坐标为:.
练习册系列答案
相关题目