题目内容
【题目】如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.
(1)求一次函数的解析式;
(2)求出点C的坐标;
(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.
【答案】(1)y=﹣x+4;(2)(4,7);(3)P(0,3)
【解析】
(1)根据待定系数法确定函数解析式即可;
(2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;
(3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.
解:(1)设AB直线的解析式为:y=kx+b,
把(0,4)(3,0)代入可得:,
解得:,
∴一次函数的解析式为:y=﹣x+4;
(2)如图,作CD⊥y轴于点D.
∵∠BAC=90°,
∴∠OAB+∠CAD=90°,
又∵∠CAD+∠ACD=90°,
∴∠ACD=∠BAO.
在△ABO与△CAD中,
∵,
∴△ABO≌△CAD(AAS),
∴OB=AD=3,OA=CD=4,OD=OA+AD=7.
∴C的坐标是(4,7).
(3)如图,作点B关于y轴的对称点B′,连接CB′交y轴于P,此时PB+PC的值最小.
∵B(3,0),C(4,7)
∴B′(﹣3,0),
设直线CB′的解析式为y=mx+n,
把(﹣3,0)(4,7)代入y=mx+n中,
可得:,
解得:,
∴直线CB′的解析式为y=x+3,
令x=0,得到y=3,
∴P(0,3).
【题目】某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.
时间x(天) | 0 | 4 | 8 | 12 | 16 | 20 |
销量y1(万朵) | 0 | 16 | 24 | 24 | 16 | 0 |
另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如下图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.