题目内容
【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
【答案】B
【解析】试题解析:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),
∴3=a(1﹣4)2﹣3,
解得:a=,故①正确;
∵E是抛物线的顶点,
∴AE=EC,
∴无法得出AC=AE,故②错误;
当y=3时,3=(x+1)2+1,
解得:x1=1,x2=﹣3,
故B(﹣3,3),D(﹣1,1),
则AB=4,AD=BD=2,
∴AD2+BD2=AB2,
∴③△ABD是等腰直角三角形,正确;
∵(x+1)2+1=(x﹣4)2﹣3时,
解得:x1=1,x2=37,
∴当37>x>1时,y1>y2,故④错误.
故选B.
练习册系列答案
相关题目