题目内容
【题目】如图,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一条高线.若E,F分别是CD和BC上的动点,则BE+EF的最小值是_____.
【答案】.
【解析】
作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,则B′F的长度即为BE+EF的最小值,根据直角三角形的性质得到BD=CD,根据已知条件得到BB′=BC,推出△CDB≌△BB′F,于是得到B′F=CD.
作B关于CD的对称点B′,过B′作B′F⊥BC于F交CD于E,
则B′F的长度即为BE+EF的最小值,
∵∠ABC=60°,CD⊥AB,
∴∠BCD=30°,
∴BD=CD,
∵BD=BB′,
∴BB′=BC,
在△CDB与△B′FB中,
,
∴△CDB≌△BB′F,(AAS)
∴B′F=CD=BC=.
故答案是:.
练习册系列答案
相关题目