题目内容
80
度.分析:在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中求∠ACB的度数即可.
解答:解:在△DFB中,
∵DF⊥AB,
∴∠DFB=90°,
∵∠D=30°,∠DFB+∠D+∠B=180°,
∴∠B=60°.
在△ABC中,
∠A=40°,∠B=60°,
∴∠ACB=180°-∠A-∠B=80°.
所以∠ACB的度数是80度.
∵DF⊥AB,
∴∠DFB=90°,
∵∠D=30°,∠DFB+∠D+∠B=180°,
∴∠B=60°.
在△ABC中,
∠A=40°,∠B=60°,
∴∠ACB=180°-∠A-∠B=80°.
所以∠ACB的度数是80度.
点评:解答本题时,主要利用了三角形内角和定理.
练习册系列答案
相关题目