题目内容
【题目】如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.
(1)求证:是的切线;
(2)若,,求的边上的高.
(3)在(2)的条件下,求的面积.
【答案】(1)见解析;(2)4.5;(3)27
【解析】
(1)根据等腰三角形的性质可得,结合切线的判定方法可得结论;
(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;
(3)根据两组对应角分别相等的两个三角形相似可得,利用相似三角形对应线段成比例可求得EO长,由三角形面积公式求解即可.
(1)证明:∵,,
∴,,
∵,
∴,
∴,
∴
∵是圆的半径,
∴是的切线;
(2)如图,过点作于点,连接,
∵点是的中点,,
∴,,
又∵,,,,
∴,
∴,
(3)∵,
∴,
∵,,
∴,
∴,
∴,
由(2)得
即,得,
∴的面积是:.
练习册系列答案
相关题目
【题目】随机抽取某小吃店一周的营业额(单位: 元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合计 |
(1)分析数据,填空:这组数据的平均数是 元,中位数是 元,众数是 元.
(2)估计一个月(按天计算)的营业额,星期一到星期五营业额相差不大,用这天的平均数估算合适么?简要说明理由.