题目内容
【题目】在平面直角坐标中,抛物线y=ax2﹣3ax﹣10a(a>0)分别交x轴于点A、B(点A在点B左侧),交y轴于点C,且OB=OC.
(1)求a的值;
(2)如图1,点P位抛物线上一动点,设点P的横坐标为t(t>0),连接AC、PA、PC,△PAC的面积为S,求S与t之间的函数关系式;
(3)如图2,在(2)的条件下,设对称轴l交x轴于点H,过P点作PD⊥l,垂足为D,在抛物线、对称轴上分别取点E、F,连接DE、EF,使PD=DE=EF,连接AE交对称轴于点G,直线y=kx﹣k(k≠0)恰好经过点G,将直线y=kx﹣k沿过点H的直线折叠得到对称直线m,直线m恰好经过点A,直线m与第四象限的抛物线交于另一点Q,若=,求点Q的坐标.
【答案】(1)a=;(2)S= t2+t;(3)Q(,﹣).
【解析】
试题分析:(1)令y=0,求出x轴交点坐标,再用OB=OC求出C点坐标,代入抛物线方程即可;(2)先求出直线AC解析式,再用t表示出PN代入面积公式计算即可;(3)依次求出直线AE的解析式为y=﹣x﹣2,直线WG的解析式为y=3x﹣8,直线KH的解析式为y=﹣2x+3,直线AV的解析式为y=﹣x﹣,即可.
试题解析:(1)令y=0,则ax2﹣3ax﹣10a=0,
即a(x+2)(x﹣5)=0,
∴x1=﹣2,x2=5,
∴A(﹣2,0),B(5,0),
∴OB=5,
∵OB=OC,
∴OC=5,
∴C(0,﹣5),
∴﹣5=﹣10a,
∴a=;
(2)如图1,
由(1)可知知抛物线解析式为y=x2﹣x﹣5,
设直线AC的解析式为:y=k1x+b,把A、C两点坐标代入得:
,解得:,
∴y=﹣x﹣5,
∵点P的横坐标为t,则P(t, t2﹣t﹣5),
过点P作PN∥x轴交AC于点N,
把y=x2﹣x﹣5,代入直线AC解析式y=﹣x﹣5中,
解得xN=﹣t2+t,
∴N(﹣t2+t, t2﹣t﹣5),
∴PN=t﹣(﹣t2+t)=t2+t,
S=S△ANP+S△CNP=PN×AJ+PN×AI
=PN×OI+PN×CI
=PN(OI+CI)
=PN×OC
=t2+t,
(3)由y=x2﹣x﹣5=(x﹣)2﹣,
得抛物线的对称轴为直线x=,顶点坐标为(,﹣),
∵,
∴设DP=5n,DF=8n,
∵DE=EP=5n,过点E作EM⊥l于点M,则DM=FM=DF=4n,
∴在Rt△DME中,EM=3n,
∴点P的横坐标为5n+,点E横坐标为3n+,
∴yP=(5n+﹣)2﹣=n2﹣,
yE=(3n+﹣)2﹣=n2﹣
∴D(, n2﹣),M(, n2﹣),
∴DM=n2﹣﹣(n2﹣)=8n2,
∴8n2=4n,
∴n=,
∴E(3,﹣5),
∵A(﹣2,0),E(3,﹣5),
∴直线AE的解析式为y=﹣x﹣2,
令x=,则y=﹣x﹣2=﹣﹣2=﹣,
∴G(,﹣),
∵直线y=kx﹣k(k≠0)恰好经过点G,
∴﹣=k﹣k,
∴k=3,
∴直线WG的解析式为y=3x﹣8,
如图2,
点A关于HK的对称点A′(m,3m﹣8),
∵A(﹣2,0),H(,0),
∴AH=,
∵HS垂直平分AA′,
∴A′H=AH=,
过A′作A′R⊥x轴于R,
在Rt△A′HR中,A′R2+HR2=A′H2,
∴(3m﹣8)2+(m﹣)2=,
∴m1=(舍),m2=,
∴A′(,),
∴tan∠A′AR=,
∵∠HAS+∠AHS=∠OKH+∠AHS=90°,
∴tan∠OKH=tan∠A′AR=,
∴tan∠OKH=,
∴OK=3,
∴K(0,3),
∴直线KH的解析式为y=﹣2x+3,
∵,
∴,
∴V(,﹣),
∵A(﹣2,0),
∴直线AV的解析式为y=﹣x﹣,
设Q(s, s2﹣s﹣5),代入y=﹣x﹣中,
s2﹣s﹣5=﹣s﹣,
∴s1=﹣2(舍),s2=,
∴Q(,﹣).
【题目】二次函数y=ax2+bx+c图象上部分点的坐标满足表格:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
则该函数图象的顶点坐标为( )
A.(﹣3,﹣3)
B.(﹣2,﹣2)
C.(﹣1,﹣3)
D.(0,﹣6)