题目内容
【题目】如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是______.
【答案】6-π
【解析】
分别求出DC=BC=CE=2,BD=BF=2,求出∠DCE=90°,∠DBF,分别求出△BCD、△BEF、扇形DBF、扇形DCE的面积,即可得出答案.
过F作FM⊥BE于M,则∠FME=∠FMB=90°,
∵四边形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积S=S△BCD+S△BFE+S扇形DCE-S扇形DBF
=×2×2+×4×2+
=6-π,
故答案为:6-π.
练习册系列答案
相关题目
【题目】在“全民读书月”活动中,小明调查了班级里40名同学本学期购买课外书的费用情况,并将结果绘制成如图所示的统计表和扇形统计图,请根据相关信息,解答下列问题:(直接填写结果)
费用(元) | 20 | 30 | 50 | 80 | 100 |
人数 | 6 | a | 10 | b | 4 |
(1)本次调查获取的样本数据的众数是 元,中位数是 元;
(2)扇形统计图中,“50元”所对应的圆心角的度数为 度,该班学生购买课外书的平均费用为 元;
(3)若该校共有学生1000人,根据样本数据,估计本学期购买课外书花费50元的学生有 人.