题目内容

【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A110),点B06),点PBC边上的动点(点P不与点BC重合),经过点OP折叠该纸片,得点B′和折痕OP.设BP=t

)如图,当BOP=300时,求点P的坐标;

)如图,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m

)在()的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

【答案】(Ⅰ)根据题意,∠OBP=90°,OB=6。

在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t。

∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=,t2=-(舍去).

∴点P的坐标为( ,6)。

(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,

∴△OB′P≌△OBP,△QC′P≌△QCP。

∴∠OPB′=∠OPB,∠QPC′=∠QPC。

∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°。

∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ。

又∵∠OBP=∠C=90°,∴△OBP∽△PCQ。∴

由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-m.

。∴(0<t<11)。

(Ⅲ)点P的坐标为(,6)或(,6)。

【解析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案。

(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,

△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案。

(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:

过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°。

∴∠PC′E+∠EPC′=90°。

∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A。

∴△PC′E∽△C′QA。∴

∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,

,即,∴,即

代入,并化简,得。解得:

∴点P的坐标为(,6)或(,6)。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网