题目内容

【题目】已知OA,OB是⊙O的半径,且OAOB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.

(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;

(2)如图②,点POA的延长线上,若∠OBQ=65°,求∠AQE的大小.

【答案】(1)30°;(2)20°;

【解析】

(1)利用圆切线的性质求解;

(2) 连接OQ,利用圆的切线性质及角之间的关系求解。

(1)如图①中,连接OQ.

EQ是切线,

OQEQ,

∴∠OQE=90°,

OAOB,

∴∠AOB=90°,

∴∠AQB=AOB=45°,

OB=OQ,

∴∠OBQ=OQB=15°,

∴∠AQE=90°﹣15°﹣45°=30°.

(2)如图②中,连接OQ.

OB=OQ,

∴∠B=OQB=65°,

∴∠BOQ=50°,

∵∠AOB=90°,

∴∠AOQ=40°,

OQ=OA,

∴∠OQA=OAQ=70°,

EQ是切线,

∴∠OQE=90°,

∴∠AQE=90°﹣70°=20°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网