题目内容
【题目】如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是( )
A.B.2≤OP≤4C.≤OP≤D.3≤OP≤4
【答案】A
【解析】
如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.
解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,
∵点B(0,3),B'(0,﹣3),点A(4,0),
∴OB=OB'=3,OA=4,
∴,
∵点P是BC的中点,
∴BP=PC,
∵OB=OB',BP=PC,
∴B'C=2OP,
当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,
当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,
∴,
故选:A.
练习册系列答案
相关题目