题目内容
已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.
分析:(1)把抛物线上的两点代入解析式,解方程组可求b、c的值;
(2)令y=0,求抛物线与x轴的两交点坐标,观察图象,求y>0时,x的取值范围.
(2)令y=0,求抛物线与x轴的两交点坐标,观察图象,求y>0时,x的取值范围.
解答:解:(1)将点(-1,0),(0,3)代入y=-x2+bx+c中,得
,解得
.
∴y=-x2+2x+3.
(2)令y=0,解方程-x2+2x+3=0,
得x1=-1,x2=3,抛物线开口向下,
∴当-1<x<3时,y>0.
|
|
∴y=-x2+2x+3.
(2)令y=0,解方程-x2+2x+3=0,
得x1=-1,x2=3,抛物线开口向下,
∴当-1<x<3时,y>0.
点评:本题考查了待定系数法求抛物线解析式,根据抛物线与x轴的交点,开口方向,可求y>0时,自变量x的取值范围.
练习册系列答案
相关题目
已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )
A、y1≥y2 | B、y1>y2 | C、y1<y2 | D、y1≤y2 |