题目内容
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.
(1)求证:CD=CE;
(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.
【答案】(1)证明见解析;(2)S阴=.
【解析】
(1)只要证明∠E=∠D,即可推出CD=CE;
(2)根据S阴=S扇形OBC-S△OBC计算即可解决问题;
(1)证明:∵AB是直径,
∴∠ACB=90°,
∵DC=BC,
∴AD=AB,
∴∠D=∠ABC,
∵∠E=∠ABC,
∴∠E=∠D,
∴CD=CE.
(2)解:由(1)可知:∠ABC=∠E=30°,∠ACB=90°,
∴∠CAB=60°,AB=2AC=4,
在Rt△ABC中,由勾股定理得到BC=2,
连接OC,则∠COB=120°,
∴S阴=S扇形OBC﹣S△OBC=.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目