题目内容
【题目】如图,在△ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线,∠A =58°,求∠H的度数.
【答案】
【解析】试题分析:先根据三角形内角和定理及∠A=58°求出∠ABC+∠ACB的度数,再根据角平分线的定义及三角形外角的性质用∠A、∠ABC、∠ACB表示出∠BCH及∠HBC的度数,再利用三角形内角和定理即可求出∠H的度数.
试题解析:∠A=58°,∴∠ABC+∠ACB=180°∠A=180°58°=122°…①
∵BH是∠ABC的平分线,∴∠HBC=∠ABC,
∵∠ACD是△ABC的外角,CH是外角∠ACD的角平分线,
∴∠ACH= (∠A+∠ABC),
∴∠BCH=∠ACB+∠ACH=∠ACB+ (∠A+∠ABC),
∵∠H+∠HBC+∠ACB+∠ACH=180°,
∴∠H+∠ABC+∠ACB+ (∠A+∠ABC)=180°,即∠H+(∠ABC+∠ACB)+ ∠A=180°…②,
把①代入②得,∠H+122°+58°=180°,
∴∠H=29°.
练习册系列答案
相关题目
【题目】某商场销售甲、乙两种品牌的智能手机.这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4400 | 2000 |
售价(元/部) | 5000 | 2500 |
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.(毛利润=(售价一进价)×销售量)
(Ⅰ)该商场计划购进甲、乙两种手机各多少部?
(II)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过156万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。