题目内容
【题目】如图,中,且是的中点
(1)求证:四边形是平行四边形。
(2)求证:四边形是菱形。
(3)如果时,求四边形ADBE的面积
(4)当 度时,四边形是正方形(不证明)
【答案】(1)见解析;(2)见解析;(3)24;(4)45.
【解析】
(1)推出CE=BD,CE∥BD,可证四边形是平行四边形;
(2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可;
(3)由四边形BDEC是平行四边形,可得DE=BC=6,然后根据菱形的面积公式求解即可;
(4)当45度时,可证△ABC是等腰直角三角形,从而AB=BC=DE,可证四边形是正方形.
(1)证明:∵E是AC的中点,
∴CE=AE=AC,
∵DB=AC,
∵BD=CE,
∵BD∥AC,
∴BD∥CE,
∴四边形BDEC是平行四边形,
∴DE∥BC.
(2)证明:∵DE∥BC,∠ABC=90°,
∴DE⊥AB,
∵AE=AC,DB=AC,BD∥AC,
∴BD=AE,BD∥AE,
∴四边形ADBE是平行四边形,
∴平行四边形ADBE是菱形;
(3)∵四边形BDEC是平行四边形,
∴DE=BC=6.
∵四边形ADBE是菱形,
∴四边形ADBE面积=;
(4)当45度时,四边形是正方形.
∵45,
∴△ABC是等腰直角三角形,
∴AB=BC=DE,
∵四边形ADBE是菱形,
∴四边形是正方形.
练习册系列答案
相关题目