题目内容
【题目】下表记录了一名球员在罚球线上投篮的结果,
投篮次数(n) | 50 | 100 | 150 | 209 | 250 | 300 | 350 |
投中次数(m) | 28 | 60 | 78 | 104 | 123 | 152 | 175 |
投中频率(n/m) | 0.56 | 0.60 |
| 0.49 |
|
|
(1)计算并填写表中的投中频率(精确到0.01);
(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?
【答案】解:(1)根据题意得:
78÷150=0.52;
104÷209≈0.50;
152÷300≈0.51;
175÷350≈0.58;
填表如下:
投篮次数(n) | 50 | 100 | 150 | 209 | 250 | 300 | 350 |
投中次数(m) | 28 | 60 | 78 | 104 | 123 | 152 | 175 |
投中频率(n/m) | 0.56 | 0.60 | 0.52 | 0.50 | 0.49 | 0.51 | 0.58 |
故答案为:0.52,0.50,0.51,0.58;
(2)由题意得:
投篮的总次数是50+100+150+209+250+300+350=1409(次),
投中的总次数是28+60+78+104+123+152+175=720(次),
则这名球员投篮的次数为1409次,投中的次数为720,
故这名球员投篮一次,投中的概率约为:≈0.5.
故答案为:0.5
【解析】(1)用投中的次数除以投篮的次数即可得出答案;
(2)计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.
练习册系列答案
相关题目