题目内容
【题目】在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:交于点A,与直线l2:x=k交于点B.直线l1与l2交于点C.
(1) 当点A的横坐标为1时,则此时k的值为 _______;
(2) 横、纵坐标都是整数的点叫做整点. 记函数(x>0) 的图像在点A、B之间的部分与线段AC,BC围成的区域(不含边界)为W.
①当k=3时,结合函数图像,则区域W内的整点个数是_________;
②若区域W内恰有1个整点,结合函数图象,直接写出k的取值范围:___________.
【答案】(1) ;(2)①3;②或.
【解析】
(1)将A代入函数(x>0)与l1:,即可求出;
(2)①画出当k=3时,相应的图象,由图得到整点的个数;
②分为点C在曲线(x>0)下方、上方两种情况画出符合题意的图象,据图写出k需要满足的条件.
解:设点,∵A在上,
.
.
点在函数的图象上,
;
故答案为:.
(2)①当k=3时,作图如下,
观察图象,区域W内的整点个数是3;
②当点C在曲线(x>0)下方,如下图,
区域W内唯一的1个整点为(1,1),
只需满足:当时,,
∴;
当点C在曲线(x>0)上方,如下图,
区域W内唯一的1个整点为(2,2),
只需满足:且当时,,,
∴;
综上所述:或.
【题目】在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:
(1)求各班参赛人数,并补全条形统计图;
(2)此次竞赛中8(2)班成绩为C级的人数为_______人;
(3)小明同学根据以上信息制作了如下统计表:
平均数(分) | 中位数(分) | 方差 | |
8(1)班 | m | 90 | n |
8(2)班 | 91 | 90 | 29 |
请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;
【题目】如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | 5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.