题目内容

【题目】如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=3 ,求弦AD的长.

【答案】
(1)证明:连结OC,如图,

∵AD平分∠EAC,

∴∠1=∠3,

∵OA=OD,

∴∠1=∠2,

∴∠3=∠2,

∴OD∥AE,

∵AE⊥DC,

∴OD⊥CE,

∴CE是⊙O的切线;


(2)∵∠CDO=∠ADB=90°,

∴∠2=∠CDB=∠1,∵∠C=∠C,

∴△CDB∽△CAD,

= =

∴CD2=CBCA,

∴(3 2=3CA,

∴CA=6,

∴AB=CA﹣BC=3, = = ,设BD= K,AD=2K,

在Rt△ADB中,2k2+4k2=5,

∴k=

∴AD=


【解析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得 = = ,推出CD2=CBCA,可得(3 2=3CA,推出CA=6,推出AB=CA﹣BC=3, = = ,设BD= K,AD=2K,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网