题目内容
【题目】如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM;
②连接BE并延长交AM于点F;
③连接FC.
(2)猜想与证明:猜想四边形ABCF的形状,并说明理由.
【答案】(1)详见解析;(2)四边形ABCF是平行四边形.
【解析】
(1)利用尺规作出∠DAC的平分线AM即可,连接BE延长BE交AM于F,连接FC;
(2)只要证明△AEF≌△CEB即可解决问题.
解:(1)如图所示:
(2)四边形ABCF是平行四边形.
理由如下:
∵AB=AC,
∴∠ABC=∠ACB.
∴∠DAC=∠ABC+∠ACB=2∠ACB.
由作图可知∠DAC=2∠FAC,
∴∠ACB=∠FAC.
∴AF∥BC.
∵点E是AC的中点,
∴AE=CE.
在△AEF和△CEB中, ∠FAE=∠ECB,AE=CE,∠AEF=∠CEB,
∴△AEF≌△CEB(ASA),
∴AF=BC.
又∵AF∥BC,
∴四边形ABCF是平行四边形.
练习册系列答案
相关题目