题目内容

如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,则点A′的坐标         
(?).

试题分析:由已知条件可得:BC=1,OC=2.设OC与A′B交于点F,作A′E⊥OC于点E,易得△BCF≌△OA′F,那么OA′=BC=1,设A′F=x,则OF=2-x.利用勾股定理可得A′F=,OF=,利用面积可得A′E=A′F×OA′÷OF=,利用勾股定理可得OE=,所以点A’的坐标为(?).
试题解析::∵OB= OB=,,
∴BC=1,OC=2
设OC与A′B交于点F,作A′E⊥OC于点E

∵纸片OABC沿OB折叠
∴OA=OA′,∠BAO=∠BA′O=90°
∵BC∥A′E
∴∠CBF=∠FA′E
∵∠AOE=∠FA′O
∴∠A′OE=∠CBF
∴△BCF≌△OA′F
∴OA′=BC=1,设A′F=x
∴OF=2-x∴x2+1=(2-x)2
解得x=
∴A′F=,OF=
∵A′E=A′F×OA′÷OF=
∴OE=
∴点A’的坐标为(?).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网