题目内容

如图所示,在△ABC中,AC=7,BC=4,D为AB的中点,E为AC边上一点,且∠AED=90°+
1
2
∠C,求CE的长.
作BFDE交AC于F,作∠ACB的平分线交AB于G,交BF于H,
则∠AED=∠AFB=∠CHF+
1
2
∠C.
因为∠AED=90°+
1
2
∠C,所以∠CHF=90°=∠CHB.
又∠FCH=∠BCH,CH=CH.
∴△FCH≌△BCH.
∴CF=CB=4,
∴AF=AC-CF=7-4=3.
∵AD=DB,BFDE,
∴AE=EF=1.5,
∴CE=5.5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网