题目内容

如图,已知?ABCD的对角线交于O点,M为OD的中点,过M的直线分别交AD于CD于P、Q,与BA、BC的延长线于E、F

(1)如图1,若EFAC,求证:PE+QF=2PQ;
(2)如图2,若EF与AC不平行,则(1)中的结论是否仍然成立?若成立,加以证明;不成立,请说明理由.
(1)如图1,∵MPOA,DM=MO,
∴DP=PA.
在?ABCD中,∵ABCD,
∴∠EAP=∠QDP,∠AEP=∠DQP.
在△APE与△DPQ中,
∠EAP=∠QDP
∠AEP=∠DQP
PA=PD

∴△APE≌△DPQ(AAS),
∴PE=PQ.
同理,QF=PQ,
∴PE+QF=2PQ;

(2)若EF与AC不平行,则(1)中的结论仍然成立.理由如下:
如图2,过O点作ONAD交EF于N,则ON是梯形CFPA的中位线,则AP+CF=2ON.
易证△OMN≌△DMP,
∴ON=PD,
∴AP+CF=2PD.
∵CFPD,∴
QF
PQ
=
CF
PD

∵DQAE,∴
PE
PQ
=
AP
PD

QF
PQ
+
PE
PQ
=
CF
PD
+
AP
PD
,即
QF+PE
PQ
=
CF+AP
PD
=
2PD
PD
=2,
∴QF+PE=2PQ.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网