题目内容

如图,已知ABEFCD,AD与BC相交于点O.
(1)如果CE=3,EB=9,DF=2,求AD的长;
(2)如果BO:OE:EC=2:4:3,AB=3,求CD的长.
(1)∵CE=3,EB=9,
∴BC=CE+EB=12.
∵ABEF,
FO
AF
=
EO
EB
,则
FO
EO
=
AF
EB

又EFCD,
FO
FD
=
EO
EC
,则
FO
EO
=
FD
EC

AF
EB
=
FD
EC
,即
AF
9
=
2
3

∴AF=6,
∴AD=AF+FD=6+2=8,即AD的长是8;

(2)∵ABCD,
∴BO:OE=AB:EF.
又BO:OE=2:4,AB=3,
∴EF=6.
∵EFCD,
OE
OC
=
EF
CD

又∵OE:EC=4:3,
OE
OC
=
4
7

EF
CD
=
4
7

∴CD=
7
4
EF=10.5,即CD的长是10.5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网