题目内容
【题目】(1)如图①,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于点D,AE平分∠BAC,求∠EAD的度数;
(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,
①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;
②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.
【答案】(1)∠EAD=20°;(2)①∠EAD=y-x,理由见解析;②∠EFM=y-x,理由见解析.
【解析】试题分析:(1)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;
(2)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;
(3)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出∠EAD,推出∠FEM=∠EAD,即可得出答案.
试题解析:(1)∵∠B=40°,∠C=80°,
∴∠BAC=180°-∠B-∠C=60°,
∵AE平分∠BAC,
∴∠CAE=∠BAC=30°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=80°,
∴∠CAD=90°-∠C=10°,
∴∠EAD=∠CAE-∠CAD=30°-10°=20°;
(2)∵三角形的内角和等于180°,
∴∠BAC=180°-∠B-∠C=180°-x-y,
∵AE平分∠BAC,
∴∠CAE= ∠BAC= (180°xy),
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-y,
∴∠EAD=∠CAE-∠CAD= (180°-x-y)-(90°-y)=y-x;
(3)过A作AD⊥BC于D,
∵三角形的内角和等于180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠CAE= ∠BAC= (180°x-y),
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-y,
∴∠EAD=∠CAE-∠CAD= (180°-x-y)-(90°-y)= y-x,
∵AD⊥BC,FM⊥BC,
∴AD∥FM,
∴∠EFM=∠EAD,
∴∠EFM= y-x.