题目内容
【题目】若一组数据3,4,x,6,7的众数是3,则这组数据的中位数为( )
A.3B.4C.6D.7
【答案】B
【解析】
根据众数的意义求出x的值,再根据中位数的意义,从小到大排序后,找出处在第3位的数即可.
一组数据3,4,x,6,7的众数是3,因此x=3,
将一组数据3,4,3,6,7排序后处在第3位的数是4,因此中位数是4.
故选:B.
【题目】如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
ii:试求出此旋转过程中,(NA+NB)的最小值.
【题目】已知:点O到△ABC的两边AB、AC所在直线的距离OD=OE,且OB=OC.(1)如图,若点O在BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.
【题目】如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A , B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?相遇处离C站的路程是多少千米?
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
【题目】已知△ABC与△DEF的相似比为2∶3.若△ABC周长为12,则△DEF周长为_____.
【题目】《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 .
【题目】已知y轴上点P到x轴的距离为3,则点P坐标为( )
A.(0,3)B.(3,0)
C.(0,3)或(0,-3)D.(3,0)或(-3,0)
【题目】△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.①作出△ABC关于x轴对称的△A1B1C1 , 并写出点C1的坐标;②作出△ABC关于y对称的△A2B2C2 , 并写出点C2的坐标.