题目内容
【题目】如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为( )
A. 8 B. 9.5 C. 10 D. 11.5
【答案】A
【解析】题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.在□ABCD中,由已知条件可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=4,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2,AG-4,所以△ABE的周长等于16,又由□ABCD可得△CEF∽△BEA,相似比为1:2,所以△CEF的周长为8.
解:∵在平行四边形ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴AB∥DC,∠BAF=∠DAF,
∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,
∴△ADF是等腰三角形,
同理△ABE是等腰三角形,AD=DF=9;
∵AB=BE=6,∴CF=3;
∴在△ABG中,BG⊥AE,AB=6,BG=4,可得:AG=2,又BG⊥AE,∴AE=2AG=4,
∴△ABE的周长等于16,
又∵平行四边形ABCD,∴△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为8.
故选A.
练习册系列答案
相关题目