题目内容
【题目】如图,直线OA:y=x的图象与反比例函数y=
(k≠0)在第一象限的图象交于A点,过A点作轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.
【答案】(1)y=;(2)P点的坐标为(
,0).
【解析】
(1)设点A的坐标为(a,b),由点A在反比例函数图象上结合三角形△OAM的面积为1,可得出关于k、a、b的三元一次方程组,解方程即可求出k值,从而得出反比例函数解析式;
(2)联立直线与反比例函数解析式求出点A的坐标,找出点A关于x轴的对称点C的坐标,再结合反比例函数解析式求出点B坐标,连接BC即可找出点P的位置,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,令y=0求出x值即可得出点P的坐标.
解:(1)设点A的坐标为(a,b),
则,解得:k=2.
∴反比例函数的解析式为y=.
(2)联立直线OA和反比例函数解析式得:
,解得:
.
∴点A的坐标为(2,1).
设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1),连接BC较x轴于点P,点P即为所求.如图所示.
设直线BC的解析式为y=mx+n,
由题意可得:B点的坐标为(1,2),
∴,
解得:.
∴BC的解析式为y=﹣3x+5.
当y=0时,0=﹣3x+5,解得:x=.
∴P点的坐标为(,0).
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下.
(1)补全下表,在所给坐标系中画出函数的图象:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | 0 | ﹣1 | 0 | … |
(2)观察图象,写出该函数两条不同类型的性质;
(3)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根;
③关于x的方程x2﹣2|x|=a有4个实数根,a的取值范围是 .