题目内容
【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
【答案】(1)证明见解析;(2)当旋转角α=30°时,四边形ABPF是菱形.理由见解析.
【解析】
试题分析:(1)根据旋转的性质得出AB=AF,∠BAM=∠FAN,进而得出△ABM≌△AFN得出答案即可;
(2)利用旋转的性质得出∠FAB=120°,∠FPC=∠B=60°,即可得出四边形ABPF是平行四边形,再利用菱形的判定得出答案.
试题解析:(1)∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,
现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),
∴AB=AF,∠BAM=∠FAN,
在△ABM和△AFN中,
,
∴△ABM≌△AFN(ASA),
∴AM=AN;
(2)当旋转角α=30°时,四边形ABPF是菱形.
理由:连接AP,
∵∠α=30°,
∴∠FAN=30°,
∴∠FAB=120°,
∵∠B=60°,
∴∠B+∠FAB=180°,
∴AF∥BP,
∴∠F=∠FPC=60°,
∴∠FPC=∠B=60°,
∴AB∥FP,
∴四边形ABPF是平行四边形,
∵AB=AF,
∴平行四边形ABPF是菱形.
练习册系列答案
相关题目