题目内容
【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
【答案】C
【解析】解:∵点A坐标为(0,a),
∴点A在该平面直角坐标系的y轴上,
∵点C、D的坐标为(b,m),(c,m),
∴点C、D关于y轴对称,
∵正五边形ABCDE是轴对称图形,
∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,
∴点B、E也关于y轴对称,
∵点B的坐标为(﹣3,2),
∴点E的坐标为(3,2).
故答案为:C.
由题意得出y轴的位置,由正五边形ABCDE是轴对称图形,根据关于y轴对称点的坐标特点,即可求出点E的坐标。
练习册系列答案
相关题目