题目内容

【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

【答案】C
【解析】解:∵点A坐标为(0,a),

∴点A在该平面直角坐标系的y轴上,

∵点C、D的坐标为(b,m),(c,m),

∴点C、D关于y轴对称,

∵正五边形ABCDE是轴对称图形,

∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,

∴点B、E也关于y轴对称,

∵点B的坐标为(﹣3,2),

∴点E的坐标为(3,2).

故答案为:C.

由题意得出y轴的位置,由正五边形ABCDE是轴对称图形,根据关于y轴对称点的坐标特点,即可求出点E的坐标。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网