题目内容
【题目】(1)如图1,是等边三角形边上一动点(点)与点不重合,连接,以为边在上方作等边三角形,连接,你能发现与之间的数量关系吗?并证明你发现的结论.
(2)如图二,当动点在等边三角形边上运动时(点与点不重合),连接,以为边在其上方、下方分别作等边三角形和等边三角形,连接,,探究,与有何数量关系?并证明你探究的结论.
(3)如图三,当动点在等边三角形边的延长线上运动时,其他作法与图2相同,若,请直接写出 .
【答案】(1);(2);(3)6
【解析】
(1)由等边三角形的性质可得AC=BC,DC=CE,∠ACB=∠DCE=60°,可得∠ACE=∠BCD,根据“SAS”可证△BCD≌△ACE,即AE=BE;
(2)由等边三角形的性质可得AC=BC,DC=CF,∠ACB=∠DCF=60°,可得∠FCB=∠DCA,根据“SAS”可证△ACD≌△BCF,即BF=AD,即可得AB=AE=BF;
(3)根据等边三角形的性质和全等三角形的判定和性质可得AE=BD,BF=AD,即可求AB的长.
解:(1)AE=BD,理由如下:
∵△ABC和△DCE是等边三角形
∴AC=BC,DC=CE,∠ACB=∠DCE=60°,
∴∠ACE=∠BCD,且AC=BC,DC=CE
∴△BCD≌△ACE(SAS)
∴AE=BD
(2)AB=AE+BF,
理由如下:∵△ABC和△DCF是等边三角形,
∴AC=BC,CF=CD,∠FCD=∠BCA=60°,
∴∠FCB=∠DCA,且AC=BC,CF=CD,
∴△ACD≌△BCF(SAS)
∴BF=AD,
由(1)可知,BD=AE,
∵AB=BD+AD,
∴AB=AE+BF
(3)∵△ABC和△DCE是等边三角形,
∴AC=BC,DC=CE,∠ACB=∠DCE=60°,
∴∠BCD=∠ACE,且AC=BC,DC=CE,
∴△BCD≌△ACE(SAS)
∴AE=BD=8,
∵△ABC和△DCF是等边三角形,
∴AC=BC,CF=CD,∠FCD=∠BCA=60°,
∴∠FCB=∠DCA,且AC=BC,CF=CD,
∴△ACD≌△BCF(SAS)
∴BF=AD=2,
∵AB=BD-AD
∴AB=8-2=6.