题目内容
【题目】根据阅读材料,解决问题.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)G(t)=84,求k的最小值.
【答案】(1)8;17(2)
【解析】分析:(1)、根据题意将留个两位数相加再除以22得出答案;(2)、首先根据题意求出G(s)和G(t)的值,然后根据题意得出k和a的函数关系式,从而得出答案.
详解:(1)G(125)=(12+15+21+25+51+52)÷22=8,
G(746)=(74+76+47+46+64+67+)÷22=17;
(2)G(s)=(10a+1+10a+4+10+a+14+40+a+41)÷22=(22a+110)÷22=a+5,
G(t)=(10x+y+10x+6+10y+x+10y+6+60+x+60+y)÷22=(22x+22y+132)÷22=x+y+6,
∴G(s)G(t)=(a+5)(x+y+6)=84,又∵k===,
∴k=, ∵a≥1∴当a=1时k的最小值是:
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 6 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;(2)请把频数分布直方图补充完整;
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.