题目内容

如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为


  1. A.
    ∠1>∠2
  2. B.
    ∠1<∠2
  3. C.
    ∠1=∠2
  4. D.
    无法确定
C
分析:易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定△ADE∽△AEF,即可解题.
解答:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,
∴∠DAE=∠CEF,
∵∠ADE=∠ECF=90°,
∴△ADE∽△ECF,且相似比为2,
∴AE=2EF,AD=2DE,
又∵∠ADE=∠AEF,
∴△ADE∽△AEF,
∴∠1=∠2.
点评:本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网