题目内容
【题目】如图,抛物线与x轴交于A、B两点,过B的直线交抛物线于E,,且tan∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是________s
【答案】
【解析】过点E作EF∥AB,过点A作AH⊥EF于点H,交EF于点D,
易知A(-1,0),B(3,0),又,则,所以E(, ),
因为EF∥AB,所以∠DEH=∠ABE,所以,则,故.
蚂蚁从A到H所用的时间t== .
因为AH=,所以t的最小值是.
点晴:本题是一个求最小时间的胡不归问题,解题的关键是化=DH,一般的以目的地E为角的顶点,以构造直角三角形,得到直角边EF,再过A作AH⊥EF交BE于点D,则可解决问题.
练习册系列答案
相关题目