题目内容
【题目】四边形是平行四边形,点在边上运动(点不与点,重合)
(1)如图1,当点运动到边的中点时,连接,若平分,证明:;
(2)如图2,过点作且交的延长线于点,连接.若,,,在线段上是否存在一点,使得四边形是菱形?若存在,请说明当发,点分别在线段,上什么位置时四边形是菱形,并证明;若不存在,请说明理由.
【答案】(1)见解析;(2)存在,当且时,四边形是菱形,见解析.
【解析】
(1)由平行四边形的性质和角平分线定义得出∠AEB=∠ABE,证出AB=AE.即可得出结论;
(2)过点A作AH⊥DF于H,由直角三角形的性质得出DH=AD=1,由勾股定理得出AH= .在Rt△DEF中,∠EFD=30°,得出DF=2DE=1+,因此FH=DF-DH=,得出FH=AB.证出四边形ABFH是平行四边形.由AH=AB,即可得出结论.
(1)如图(1),平行四边形中,
∵,
∴.
∵平分,
∴,
∴
∴.
又∵,
∴.
(2)存在.当且时,四边形是菱形.理由如下:
如图,过点作于,
在平行四边形中,,,
在中,,
∴
∴,
.
∴在中,,
∴,
∴,
∴.
又∵在平行四边形中,,点在的延长线上,
∴,
∴四边形是平行四边形.
∵,
∴四边形是菱形.
练习册系列答案
相关题目
【题目】在某中学2018年田径运动会上,参加跳高的运动员的成绩如表三所示.
成绩/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人数 | 2 | 3 | 2 | 3 | 4 | 1 |
(1)写出这些运动员跳高成绩的众数;
(2)该按2017年田径运动会上跳高的平均成绩为1.63m,则该校2018年田径运动会上跳高的平均成绩与2017年相比,是否有提高?请说明理由.