题目内容
【题目】已知О是直线AB上的一点,,OE平分.
(1)在图(a)中,若,求的度数;
(2)在图(a)中,若,直接写出的度数(用含的代数式表示)
(3)将图(a)中的绕顶点O顺时针旋转至图(b)的位置.
①探究和的度数之间的关系,直接写出结论;
②在的内部有一条射线OF,满足:,试确定与的度数之间的关系,并说明理由.
【答案】(1)15°;(2);(3)①;②,理由详见解析.
【解析】
(1)由已知可求出∠BOC=180°-∠AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度数;
(2)由(1)中的证明方法可得出结论∠DOE=∠AOC,从而用含的代数式表示出∠DOE的度数;
(3)①由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°-∠DOE,则得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),从而得出∠AOC和∠DOE的度数之间的关系;
②设,,根据①中结论以及已知,得出,从而得出结论.
(1)∵,,
∴.
∵OE平分,
∴.
∵,
∴
(2).
∵,,
∴.
∵OE平分,
∴
∵,
∴.
(3)①.
∵OE平分,
∴.
∵,∴.
∵,
∴.
∴.
即.
②.
理由:设,,
由①可知,.
∴.
∵,
∴.
∴.
∵,
∴.
∴.
即.
练习册系列答案
相关题目