题目内容

【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:

若按此规律继续作长方形,则序号为⑧的长方形周长是( )

A. 288 B. 178 C. 28 D. 110

【答案】B

【解析】

结合图形分析表格中图形的周长,①的周长为:2(1+2),②的周长为:2(2+3),③的周长为:2(3+5),④的周长为:2(5+8),由此可推出第n个长方形的宽为第n-1个长方形的长,第n个长方形的长为第n-1个长方形的长和宽的和.

解:由分析可得:第⑤个的周长为:2(8+13),
第⑥的周长为:2(13+21),
第⑦个的周长为:2(21+34),
第⑧个的周长为:2(34+55)=178,

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网