题目内容

【题目】如图,反比例函数y= (x>0)与一次函数y=kx+6 交于点C(2,4 ),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.

(1)求m与k的值;
(2)当t为何值时,点Q与点N重合;
(3)若△MNQ的面积为S,试求S与t的函数关系式.

【答案】
(1)

解:将C(2,4 )代入y= 中得,m=8

将(2,3 )代入y=kx+6 中得,2k+6 =4

∴k=﹣


(2)

解:由(1)知,k=﹣

∴直线AB的解析式为y=﹣ x+6

∴A(6,0),B(0,6 ),

∴AB=12

∵AM是直径

∴∠ANM=90°,

∴∠ANM=∠AOB

又∵∠MAN=∠BAO,

∴△MAN∽△BAO,

∵OQ=AP=t,AM=2AP=2t,OA=6,OB=6 ,AB=12

∴AN=t,MN= t

∴ON=OA﹣AN=6﹣t

∵点Q与点N重合

∴ON=OQ

即6﹣t=t

∴t=3


(3)

解:①当0<t≤3时,QN=OA﹣OQ﹣AN=6﹣2t

∴S= QNMN= (6﹣2t) t=﹣ t2+3 t

②当3<t≤6时,QN=OQ+NA﹣OA=t+t﹣6=2t﹣6

∴S= QNMN= (2t﹣6) t= t2﹣3 t,

即:S=


【解析】(1)利用待定系数法直接求出m和k;(2)先求出AB,进而判断出△MAN∽△BAO,利用比例式得出AN和MN,即可得出ON,利用ON=OQ建立方程求解即可;(3)分两种情况利用三角形的面积公式即可得出结论.
【考点精析】掌握确定一次函数的表达式和相似三角形的判定是解答本题的根本,需要知道确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网