题目内容
【题目】已知点A,B在数轴上对应的实数分别是a,b,其中a,b满足|a﹣2|+(b+1)2=0.
(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程x﹣1=x+1的解,在数轴上是否存在点P,使PA+PB=PC,若存在,求出点P对应的数;若不存在,说明理由;
(3)在(1)和(2)的条件下,点A,B,C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,设运动时间为t秒,试探究:随着时间t的变化,AB与BC满足怎样的数量关系?请写出相应的等式.
【答案】(1)3;(2)﹣2或0;(3)t≤时,AB+BC=7;当t>时,BC﹣AB=7.
【解析】
(1)根据绝对值及完全平方的非负性,可得出a、b的值,继而可得出线段AB的长;
(2)先求出x的值,再由PA+PB=PC,可得出点P对应的数;
(3)根据A,B,C的运动情况确定AB,BC的变化情况,再根据t的取值范围即可求出AB与BC满足的数量关系.
(1)∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,∴线段AB的长为:2﹣(﹣1)=3;
(2)解方程x﹣1=x+1,得x=3,则点C在数轴上对应的数为3.
由图知,满足PA+PB=PC时,点P不可能在C点右侧,不可能在线段AC上,①如果点P在点B左侧时,2﹣x+(﹣1)﹣x=3﹣x,解得:x=﹣2;
③当P在A、B之间时,3﹣x=3,解得:x=0.
故所求点P对应的数为﹣2或0;
(3)t秒钟后,A点位置为:2﹣t,B点的位置为:﹣1+4t,C点的位置为:3+9t,BC=3+9t﹣(﹣1+4t)=4+5t,AB=|﹣1+4t﹣2+t|=|5t﹣3|,分两种情况讨论:
①当t≤时,AB+BC=3﹣5t+4+5t=7;
②当t>时,BC﹣AB=4+5t﹣(5t﹣3)=7.
综上所述:当t≤时,AB+BC=7;当t>时,BC﹣AB=7.
【题目】自2014年12月28日北京公交地铁调价以来,人们的出行成本发生了较大的变化. 小林根据新闻,将地铁和公交车的票价绘制成了如下两个表格。(说明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他类似)
|
|
根据以上信息回答下列问题:
小林办了一张市政交通一卡通学生卡,目前乘坐地铁没有折扣。
(1)如果小林全程乘坐地铁的里程为14公里,用他的学生卡需要刷卡交费________元;
(2)如果小林全程乘坐公交车的里程为16公里,用他的学生卡需要刷卡交________元;
(3)小林用他的学生卡乘坐一段地铁后换乘公交车,两者累计里程为12公里。已知他乘坐地铁平均每公里花费0.4元,乘坐公交车平均每公里花费0.25元,此次行程共花费4.5元。请问小林乘坐地铁和公交车的里程分别是多少公里?