题目内容
【题目】已知:如图,直线与轴、轴分别交于、两点,两动点、分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为( )
A. 、 B. 、 C. 、 D. 、
【答案】A
【解析】
首先求出一次函数与坐标轴交点A、B的坐标,由EF∥AD,且EF=AD=t,则四边形ADEF为平行四边形,若平行四边形ADEF是菱形,则DE=AD=t.由DE=2OD,列方程求出t的值,进而得出G、E点坐标,求出直线BG的解析式,即可得出M点坐标,进而得出a、h的值.
在直线解析式中,令x=0,得y=3;令y=0,得x=1,
∴A(1,0),B(0,),OA=1,OB=,
∴AB==2,
∴∠OBA=30°,
∴BF=2EF,
∵BE=,BF2=EF2+BE2,
∴EF=t,
∵EF∥AD,且EF=AD=t,
∴四边形ADEF为平行四边形,
若平行四边形ADEF是菱形,则DE=AD=t,
由DE=2OD,即:t=2(1-t),解得:t=,
∴t=时,四边形ADEF是菱形,
此时BE=,则E(0,),G(2,),
设直线BG的解析式为:y=kx+b,将(0,),(2,)代入得:,
解得:,
故直线BG的解析式为:y=-x+,
当x=1时,y=,即M点坐标为(1,),
故抛物线y=a(x-1)2+,
将(0,)代入得:a=-,
则a、h的值分别为:、,
故选A.
【题目】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):
数据段 | 频数 | 频率 |
30~40 | 10 | 0.05 |
40~50 | 36 | |
50~60 | 0.39 | |
60~70 | ||
70~80 | 20 | 0.10 |
总计 | 200 | 1 |
注:30~40为时速大于等于30千米而小于40千米,其他类同
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?