题目内容
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
【答案】(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.
【解析】
(1)根据勾股定理的逆定理解答即可;
(2)根据勾股定理解答即可
(1)是,
理由是:在△CHB中,
∵CH2+BH2=(2.4)2+(1.8)2=9
BC2=9
∴CH2+BH2=BC2
∴CH⊥AB,
所以CH是从村庄C到河边的最近路
(2)设AC=x
在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4
由勾股定理得:AC2=AH2+CH2
∴x2=(x﹣1.8)2+(2.4)2
解这个方程,得x=2.5,
答:原来的路线AC的长为2.5千米.
练习册系列答案
相关题目