题目内容
【题目】已知在△ABC中,试说明:∠A+∠B+∠C=180°
方法一: 过点A作DE∥BC. 则(填空)
∠B=∠ ,∠C=∠
∵ ∠DAB+∠BAC+ ∠CAE=180°
∴∠A+∠B+∠C=180°
方法二: 过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程 )
【答案】DAB,CAE ;见解析
【解析】
方法一:根据平行线的性质:两直线平行,内错角相等解答;
方法二:根据平行线的性质:两直线平行、同位角相等解答.
方法一:∵DE∥BC,
∴∠B=∠DAB,∠C=∠CAE,
故答案为:DAB,CAE ;
方法二:∵DE∥AC,
∴∠A=∠BED,∠C=∠BDE,
∵DF∥AB,
∴∠EDF=∠BED,∠B=∠CDF,
∵∠CDF+∠EDF+∠BDE=180°,
∴∠A+∠B+∠C=180°.
练习册系列答案
相关题目