题目内容

【题目】如图,在矩形ABCD中,点O是对角线AC上一点,以OC为半径的⊙O与CD交于点M,且∠BAC=∠DAM.

(1)求证:AM与⊙O相切;
(2)若AM=3DM,BC=2,求⊙O的半径.

【答案】
(1)证明:连接OM.

在矩形ABCD中,AB∥DC,∠D=90°

∴∠BAC=∠DCA,

∵OM=OC,

∴∠OMC=∠OCM.

∵∠BAC=∠DAM,

∴∠DAM=∠OMC.

∴∠OMC+∠DMA=∠DAM+∠DMA.

在△DAM中,∠D=90°,

∴∠DAM+∠DMA=180°﹣90°=90°.

∴∠OMC+∠DMA=90°.

∴∠AMO=90°,

∴AM⊥MO.

点M在⊙O上,OM是⊙O的半径,

∴AM与⊙O相切.


(2)在△BAC与△DAM中,

∵∠BAC=∠DAM,∠B=∠D,

∴△BAC∽△DAM,

∵AM=3DM,

∴AC=3BC.BC=2,

∴AC=6,

在△DAM中,DM2+AD2=AM2

即DM2+22=(3DM)2

解得DM= .AM=

在△AMO中,AM2+MO2=AO2

即( 2+MO2=(6﹣MO)2

解得MO=


【解析】(1)根据矩形的性质和等边对等角得到AM⊥MO,由点M在⊙O上,OM是⊙O的半径,得到AM与⊙O相切;(2)根据两角相等两三角形相似,得到△BAC∽△DAM,得到比例,求出AC的值,在△DAM中,根据勾股定理求出MO的值.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网